

Origin of Conjugated Linoleic Acids

Dale E. Bauman Cornell University

"Functional Foods" and Health Promotion

"any food or food ingredient that may provide a health benefit beyond the traditional nutrients it contains"

Institute of Medicine, NAS 1994

Partial List of Health Effects of CLA

Biological Effect

Anticarcinogenic effects (in vivo and in vitro)
Antiatherogenic properties
Altered nutrient partitioning and lipid metabolism
Antidiabetic (type II) and reduced hyperglycemia
Immune modulation
Improved bone mineralization

CLA Isomers in Ruminant Fat

cis/trans, trans/trans, and cis/cis isomers for:

7,9 9,11 11,13 8,10 10,12 12,14

- many isomers identified in milk fat (n = 24) and beef fat (n = 14)
- cis-9, trans-11 in greatest abundance
- trans-7, cis-9 second in abundance
- trans-10, cis-12 increases under certain dietary situations

CLA Isomers in Supplement

- four isomers in typical animal supplement (trans-8,cis-10; cis-9,trans-11; trans-10,cis-12; cis-11,trans-13)
- two isomers in some human supplements (cis-9,trans-11; trans-10,cis-12)

Milk Fat CLA Isomers

	/	
CIC	tranc	Icomore
6131	uano	isomers

- 9,11
- 7,9
- 10,12
- 12,14
- 11,13
- 8,10
- cis, cis isomers
- trans, trans isomers

(% total CLA)

- 76.5
 - 6.7
 - 1.1
 - 8.0
 - 0.4
 - 0.3
 - 4.8
 - 9.4

Lipid Metabolism in the Rumen

- microbial hydrolysis of dietary triglycerides
- microbial biohydrogenation of free fatty acids
- passage from rumen as free fatty acids (~85%) or as microbial phospholipids (~15%)

Pathways for Rumen Biohydrogenation

Dietary Factors Which Affect CLA in Milk Fat

Dietary Factor	Effect on CLA Content of Milk Fat		
Lipid Substrate			
Unsaturated vs saturated fat	Increased by addition of unsaturated fat		
Type of plant oil	Greatest with oils high in C18:2		
Level of plant oil	Dose dependent increase		
Ca salts of plant oils	Increased as with free oils		
Fat in animal byproducts	Minimal effect		
High oil plant feeds			
high oil corn	Minimal effect		
soybeans	Heat processing will increase		
rapeseed vs soybean	Similar effect		
Modifiers of Biohydrogenation			
Forage:concentrate ratio	Increased with high ratio		
Non structural carbohydrate level	Minor effect (possible oil x NSC interaction)		
Restricted feeding	Increased with restricted		
Fish oils	Greater increase than with plant oils		
Monensin -ionophore	Variable effect		
Dietary buffers	Little effect		
Combination			
Pasture vs conserved forages	Higher on pasture		
Growth stage of forage	Increased with less mature forage		

Effects of Feeding Plant Oils on Milk Fat CLA

Chouinard et al. 2001

Pathways for Rumen Biohydrogenation

Relationship Between cis-9, trans-11 CLA and trans-11 C_{18:1} in milk fat

∆9-Desaturase

Sterculic Acid (cyclopropene fatty acid)

Sterculia foetida

trans C_{18:1} and CLA during Sterculic Oil Infusion

Desaturase Pairs (cis-9 double bond)

trans-11 C_{18:1} / cis-9, trans-11 CLA

C_{18:0} / **C**_{18:1} (stearic / oleic)

C_{16:0} / C_{16:1} (palmitic / palmitoleic)

C_{14:0} / C_{14:1} (myristic / myristoleic)

Importance of Endogenous Synthesis

Diet	Control Milk fat CLA (mg/g)	Endogenous Synthesis of <i>c</i> 9, <i>t</i> 11 CLA ^a	Reference
Total Mixed Ration	4.2	64%	Griinari et al., 2000
Total Mixed Ration + PHVOb	6.5 7.6	78%	Corl et al., 2001
Pasture	15.5	>90%	Kay et al., 2002

^aEstimated by use of sterculic oil as a source of cyclopropene fatty acids to block Δ^9 -desaturase.

^bPartially hydrogenated vegetable oil.

Endogenous Synthesis of CLA

Source of trans-7, cis-9 CLA

Source of CLA Isomers in Milk Fat

```
cis-9, trans-11endogenous synthesis (major)rumen origin (minor)
```

trans-7, cis-9endogenous synthesis

other cis/trans, trans/trans, and cis/cis isomers
•rumen origin

Rumen Biohydrogenation

Δ9-Desaturase

- Physical Characteristics
- Regulation
 - Endocrine
 - Dietary
 - Physiological State
- Methods of Regulation
 - Transcriptional
 - Microsomal Protease

cis-9, trans-11 CLA Endogenous Synthesis

- mice Santora et al. 2000
- rats Ip et al. 1999
- humans Salminen et al. 1998
 - Adlof et al. 2000
 - Turpeinen et al. 2001

Relative Risk of Coronary Heart Disease in Women¹

	Relative Risk in Quintile				
Trans Isomer Source	1	2	3	4	5
Vegetable fats	1.00	1.43	1.11	1.39	1.78
Animal fats	1.00	0.76	0.69	0.55	0.59

¹Nurses health study - 69,181 women

Willet et al., Lancet 341:581

Transfer of Dietary CLA Isomers to Milk Fat in Dairy Cows¹

CLA Isomer	Series 1 ^a	Series 2 ^b	
	percent ± S.E.		
trans-8, cis-10	25 ± 6	23 ± 3	
cis-9, trans-11	34 ± 8	23 ± 6	
trans-10, cis-12	21 ± 5	11 ± 2	
cis-11, trans-13	28 ± 4	26 ± 5	

¹Supplement contains CLA isomers as unesterified fatty acids and was abomasally infused to avoid modifications by rumen bacteria.

^aChouinard et al., J. Dairy Sci. 82:2737.

^bChouinard et al. J. Nut. 129:1579.

Milk Fat Content of CLA

Large variation among individuals, even when physiological and environmental factors are similar

Milk Fat Content Across Dietary Shifts

Desaturase Index in Milk Fat Across Dietary Shifts

CONCLUSIONS

- cis-9, trans-11 CLA mainly from endogenous synthesis via Δ^9 -desaturase with trans-11 C_{18:1} as substrate
- trans-7, cis-9 almost exclusively from endogenous synthesis whereas other minor CLA isomers are of rumen origin
- enhancing CLA in foods derived from ruminants involves rumen production of *trans*-11 $C_{18:1}$ and tissue activity of Δ^9 -desaturase

